Электронная библиотека российских диссертаций Электронная библиотека российских диссертаций Электронная библиотека российских диссертаций Электронная библиотека российских диссертаций Электронная библиотека российских диссертаций Электронная библиотека российских диссертаций
Каталог

Обратная связь

Я ищу:

Содержимое электронного каталога российских диссертаций

Диссертационная работа:

Охтеменко Ольга Всеволодовна. Исследовательские задания как средство формирования познавательного интереса и развития математического мышления учащихся на уроках алгебры в основной школе : Дис. ... канд. пед. наук : 13.00.02 : Москва, 2002 164 c. РГБ ОД, 61:03-13/1191-7


Для получения доступа к работе, заполните представленную ниже форму:


*Имя Отчество:
*email



Содержание диссертации:

ВВЕДЕНИЕ 3

ГЛАВА I. ТЕОРЕТИЧЕСКИЕ АСПЕКТЫ РАЗВИТИЯ МАТЕМАТИЧЕСКОГО МЫШЛЕНИЯ И ФОРМИРОВАНИЯ ПОЗНАВАТЕЛЬНОГО ИНТЕРЕСА ШКОЛЬНИКОВ

§ 1. Понятие мышления в психолого-педагогической литературе 13

§ 2. Различные подходы к определению специфики математического мышления 20

§ 3. Особенности познавательного интереса к математике 34

§ 4. Психолого-дидактические основы взаимосвязи процессов развития математического мышления и формирования познавательного интереса учащихся 48

ГЛАВА II. ИСПОЛЬЗОВАНИЕ ИССЛЕДОВАТЕЛЬСКИХ ЗАДАНИЙ НА УРОКАХ АЛГЕБРЫ С ЦЕЛЬЮ ФОРМИРОВАНИЯ ПОЗНАВАТЕЛЬНОГО ИНТЕРЕСА И РАЗВИТИЯ МАТЕМАТИЧЕСКОГО МЫШЛЕНИЯ УЧАЩИХСЯ 7-9 КЛАССОВ

§ 1. Развивающий потенциал исследовательских заданий по алгебре 62

§ 2. Методика включения исследовательских заданий по алгебре в учебный процесс 80

§ 3. Виды исследовательских заданий и приемы их составления 96

§ 4. Результаты педагогического эксперимента 121

ЗАКЛЮЧЕНИЕ 142

ЛИТЕРАТУРА 144 



Введение диссертации:

В современном обществе происходят значительные преобразования в различных его сферах: политической, экономической, социальной, духовной. Не является исключением и образование. Одним из основополагающих принципов новой концепции школьного математического образования является его гуманитарная ориентация, то есть постановка акцента в преподавании математики на личность, на человека, выражающаяся тезисом «не ученик для математики, а математика для ученика» (Г.В. Дорофеев, [60], с. 16). Зачем же нужна ученику математика?

Еще более трехсот лет назад английский философ Д. Локк писал, что математику следует изучать «не столько для того, чтобы сделаться математиками, сколько для того, чтобы стать разумными людьми» ([114], с.235). Действительно, обучение математике обладает уникальными возможностями в плане интеллектуального развития учащихся, в формировании компонентов и качеств мышления, необходимых не только для продолжения образования и освоения новых областей знаний, но и обеспечивающих успешность профессиональной деятельности и полноценность повседневной жизни в современном обществе. В первую очередь, это развитие абстрактного и логического мышления, воспитание алгоритмической культуры, и в то же время — приобретение опыта творческой деятельности. Овладение учащимися в процессе обучения математике математическим методом мышления, включающим в себя все способы научного познания — дедукцию и индукцию, обобщение, сравнение, аналогию и т. п., способствует выработке у них математического стиля мышления, характеризуемого, прежде всего, доказательностью, критичностью, независимостью логической схемы рассуждения от его содержания, структурированностью рассуждений. Эти качества, по мнению А.Я. Хинчина, способны облагородить мыслительный стиль и в других областях знания и практической деятельности, сделать его более продуктивным орудием мысли ([203]), поэтому необходимы каждому человеку независимо от сферы его дальнейшей деятельности. «Иначе говоря, обучение математике в школе должно быть ориентировано не столько на собственно математическое образование в узком смысле слова, сколько на образование с помощью математики»; для этого необходима «переориентация методической системы обучения на приоритет развивающей функции обучения по отношению к его информационной функции...» ([60], с. 14, 13).

Современной психологией и дидактикой накоплен большой теоретический и практический опыт по исследованию и решению проблемы интеллектуального развития учащихся при обучении математике. Основу его составляют психологические закономерности умственного развития школьников в процессе обучения, раскрытые в трудах А.В. Брушлинского, Л.С. Выготского, В.В. Давыдова, Е.Н. Кабановой-Меллер, З.И. Калмыковой, И.Я. Лернера, A.M. Матюшкина, Н.А. Менчинской, С.Л. Рубинштейна, И.С. Якиманской и др.

Исходя из этих закономерностей, разработаны различные психолого-педагогические направления развития математического мышления учащихся (Р. Атаханов, Л.В. Виноградова, В.А. Крутецкий, Л.К. Максимов, Н.В. Метельский, А.А. Столяр, Л.М. Фридман, СИ. Шапиро и др.). Воспитание у учащихся математического мышления, выявление и исследование его компонентов рассмотрены математиками-методистами Ю.М. Колягиным, В.И. Крупичем, Г.Л. Луканкиным, О.С. Медведевой, В.И. Мишиным, М.В. Потоцким, И.М. Смирновой, Н.А. Терешиным, СИ. Шварцбурдом и др.

Большой вклад в исследование вопросов формирования и развития математического мышления внесли математики Г. Вейль, А. Пуанкаре, Г. Штейнгауз, Б.В. Гнеденко, А.Н. Колмогоров, А.И. Маркушевич, А.Я. Хинчин.

В диссертационных исследованиях Н.К. Амонова [8], О.А. Креславской [101], О.С Медведевой [128], С.Д- Мухаметрахимовой [143], Д.Д. Рыбдыловой [174], И.Н. Семеновой [176], Е.В. Сухоруковой [184] обоснованы приемы развития различных компонентов математического мышления: логического, абстрактного, алгоритмического, эвристического (в частности, комбинаторного) мышления; анализа, планирования и рефлексии на математическом материале. При этом развитие математического мышления связывается с решением задач как основным методом обучения и методом приобретения знаний.

Мы полагаем, что наиболее адекватным сущности математической деятельности, а значит и формированию компонентов и качеств математического мышления, является выполнение школьниками исследовательских заданий, т.е. заданий, при решении которых ученик должен пройти основные этапы процесса математического исследования, включающего в себя формулировку рассматриваемой проблемы, построение математической модели задачи, изучение и анализ данных, построение плана исследования, выдвижение гипотез, их подтверждение или опровержение, логическое оформление решения, анализ и обобщение результатов, их интерпретацию и применение.

Проблема исследовательской деятельности школьников имеет богатую историю. Идея исследовательского метода появилась в педагогике в последней трети XIX века и была сформулирована биологом А.Я. Гердом, историком М.М. Стасюлевичем в России и химиком Р.Э. Армстронгом, естествоиспытателем Т. Гексли в Великобритании. Основное внимание уделялось учебным исследованиям в естественнонаучной и гуманитарной областях (Б.В. Всесвятский [31], В.Е. Райков [170] и др.); эти направления исследовательской деятельности школьников продолжают оставаться приоритетными и на сегодняшний день (В.И. Андреев [9], А.В. Леонтович [108], И.Д. Чечель [209], а также см. сборники [80], [169]).

Включение элементов исследования в учебную деятельность используется в гимназиях и лицеях как в рамках отдельных конкретных предметов, так и в качестве общешкольной дидактической концепции (опыт подобной творческой работы некоторых школ освещен в [209], с. 100-115). Широкое распространение в отечественной и зарубежной практике получил такой вид исследовательской работы, как метод проектов (Б.Л. Вульфсон [32]; В.В. Гузеев [50]; [80]; Е.С. Полат [162]; [169]; З.И. Хусаинова [204]; И.Д. Чечель [209] и др.). По словам А.В. Леонтовича, суть учебно-исследовательской деятельности учащихся как перспективной образовательной технологии, развивающейся в настоящее время в образовательных учреждениях Москвы, состоит «в том, что в рамках различных форм образовательной работы (курс «технология», группы дополнительного образования, лагеря труда и отдыха, экспедиции) учащиеся выполняют исследовательские проекты в различных областях естественных и гуманитарных наук» ([108], с. 152). Планируемое нами выполнение учебного исследования на уроках алгебры в основной школе, в которое могли бы быть вовлечены все учащиеся класса и которое не потребовало бы дополнительных затрат учебного времени, не укладывается в обозначенные рамки.

Общие аспекты формирования различных приемов математической исследовательской работы учащихся затронуты в трудах ученых-математиков А.Н. Колмогорова, А.И. Маркушевича, Б.В. Гнеденко, В.Г. Болтянского, Л.Д. Кудрявцева, Д. Пойа и др. Однако в работах математиков-методистов учебное исследование чаще всего рассматривается либо как элемент углубленного изучения математики, либо как форма факультативной работы (Б.А. Викол [27], С.А. Генкин, И.В. Итенберг, Д.В. Фомин [42], Н.К. Костюкова [100], Г.В. Токмазов [191], И.М. Челябов [207]). Что же касается основных уроков в общеобразовательной школе, то большее внимание уделяется исследовательской работе учащихся на геометрическом материале (В.А. Гусев [51], З.П. Каплан [83], Е.В. Ларькина [107], Л.М. Лоповок [115], А.Я. Цукарь [206]). Между тем, один из принципов новой концепции школьного математического образования состоит в том, чтобы при обучении математике «предпочитать эвристическое исследование доктринальному изложению» ([96], с. 15). Появление задач-исследований в учебниках по математике под редакцией Г.В. Дорофеева ([120] - [122]), исследовательские работы в учебниках по алгебре авторов К.С. Муравина, Г.К. Муравина и Г.В. Дорофеева ([5], [6]) свидетельствуют о возможности включения учебного исследования в процесс обучения математике. Однако недостаточное использование в повседневной школьной практике развивающего потенциала исследовательских заданий по алгебре определяет, на наш взгляд, целесообразность проведения дальнейшей работы в этом направлении.

В своем исследовании мы опираемся на сформулированное С.Л. Рубинштейном положение о том, что «основным способом существования психического является его существование в качестве процесса или деятельности» ([173], с.25). При этом любой мыслительный процесс, благодаря которому человек включается в познавательную деятельность, начинается и осуществляется в силу определенных причин — побуждений, мотивов и т.д. Тем самым процессуальный аспект мышления оказывается тесно связанным с его личностным аспектом, и прежде всего — с мотивационным. Негативное отношение школьника к математике препятствует развитию его математического мышления. Среди положительных мотивов учения ведущая роль принадлежит любознательности и интересу, поэтому проблему развития математического мышления учащихся мы рассматриваем во взаимосвязи с педагогической проблемой формирования познавательного интереса к математике.

Изучению познавательных интересов учащихся, поиску эффективных путей их формирования посвящены работы многих психологов и педагогов; в их числе — Л.И. Божович, А.К. Дусавицкий, В.А. Крутецкий, А.К. Маркова, Н.В. Метельский, Н.Г. Морозова, С.Л. Соловейчик, Г.И. Щукина, Л.М. Фридман.

М.Д. Боярский [24], Л.П. Кибардина [86], П.С. Коркина [99], А.В. Кухарь [106], В.Ф. Моргун [137], О.В. Тараканова [186] в своих диссертационных исследованиях осветили различные аспекты проблемы формирования познавательного интереса к математике. Однако отмечаемое многими педагогами падение интереса к учению, с одной стороны, а с другой — наличие учащихся, жаждущих удовлетворить свой интерес к математике, свидетельствует о том, что проблема эта по-прежнему актуальна. Более того, давняя идея «учения с увлечением» приобретает сегодня новый смысл, потому что школа, перестав быть единственным «окном», через которое ученик открывает мир, «должна повысить свою конкурентоспособность по сравнению с другими, внешне привлекательными, но зачастую пустыми и даже вредными компонентами окружающей образовательной среды» ([47], с. 19).

Все вышесказанное определяет актуальность нашего исследования.

Проблему исследования составляет необходимость разрешения противоречия между потребностью современной школы в дидактических средствах, активизирующих развитие математического мышления учащихся и повышающих познавательный интерес к математике, и недостаточной обеспеченностью этими средствами процесса обучения алгебре в общеобразовательной школе.

Объектом исследования являются процессы развития математического мышления и формирования познавательного интереса школьников.

Предмет исследования — использование исследовательских заданий по алгебре для развития математического мышления и формирования познавательного интереса учащихся основной школы.

Цель исследования заключается в выявлении и научном обосновании возможностей использования исследовательских заданий по алгебре для развития математического мышления учащихся 7-9 классов на основе формирования у них познавательного интереса к математике.

Поиск решения проблемы основывается на гипотезе о том, что развитие математического мышления учащихся основной школы и формирование у них познавательного интереса к математике - взаимосвязанные процессы, и эффективным средством, активизирующим эти процессы, является целенаправленное и систематическое использование на уроках алгебры исследовательских заданий.

В соответствии с проблемой, объектом, предметом, целью и гипотезой определены следующие задачи исследования:

1. Конкретизировать содержание проблемы формирования математического мышления и познавательного интереса учащихся в рамках современной концепции обучения математике.

2. Изучить психолого-педагогические и дидактические условия развития математического мышления и познавательного интереса школьников.

3. Выявить возможности использования исследовательских заданий по алгебре для развития математического мышления и формирования познавательного интереса учащихся.

4. Разработать методику включения исследовательских заданий в учебный процесс, реализующую развивающий потенциал этих заданий.

5. Экспериментально проверить эффективность разработанной методики. Для исследования проблемы и решения поставленных задач нами были использованы следующие методы исследования:

- изучение и анализ психолого-педагогической, научно-методической и математической литературы по теме исследования;

- беседы с учителями, анкетирование учителей и учащихся, анализ ученических работ;

- наблюдение за процессом преподавания математики в средней школе;

- анализ и обобщение опыта работы учителей и собственного опыта преподавания алгебры и геометрии в средней школе;

- проведение педагогического эксперимента с целью проверки эффективности разработанной методики.

Методологические основы исследования составляют теория психического как процесса; основы теории учебной деятельности и теории общего развития в обучении; теория проблемного обучения; парадигма личностно ориентированного образования; концепция гуманитарного непрерывного математического образования, а также работы ученых математиков, раскрывающие значение математического образования для интеллектуального развития личности.

Теоретическая значимость исследования заключается в том, что в диссертации проведен анализ различных подходов к определению специфики математического мышления, исследованы психолого-дидактические основы взаимосвязи процессов развития математического мышления и познавательного интереса школьников, определен развивающий потенциал исследовательских заданий и на основе этого разработаны общие положения методики развития математического мышления учащихся и формирования у них познавательного интереса к математике посредством включения в процесс изучения алгебры исследовательских заданий.

Научная новизна состоит в том, что:

1. Раскрыта специфика взаимосвязи процессов развития математического мышления учащихся и формирования познавательного интереса к математике: познавательный интерес стимулирует развитие математического мышления, являясь одним из его мотивов, а развитие математического мышления создает интеллектуальную базу для формирования познавательного интереса к математике и является необходимым условием его превращения в теоретический интерес.

2. Определено влияние этапов решения исследовательского задания по алгебре на развитие компонентов математического мышления и формирование познавательного интереса к различным аспектам математической деятельности.

3. Выделены учебно-исследовательские умения, необходимые для успешного выполнения исследовательских заданий по алгебре и являющиеся показателями развития операционной структуры математического мышления.

4. Разработана различные варианты организации учебных исследований на уроках алгебры, различающиеся формой работы, местом в учебном процессе, степенью самостоятельности учащихся при их выполнении, а также структурой исследовательских заданий, содержанием в них исследовательских компонентов.

Практическая значимость проведенного исследования состоит в том, что разработанная методика включения исследовательских заданий в процесс обучения алгебре, ориентированная на развитие математического мышления учащихся и формирование у них познавательного интереса к математике, и приемы составления исследовательских заданий могут быть использованы в практической деятельности учителей общеобразовательных школ, а также служить основой для создания методических материалов, реализующих развивающую функцию обучения математике.

Апробация и внедрение результатов исследования осуществлялись в процессе преподавания алгебры в средних общеобразовательных школах № 1937 и № 1738 ЮВАО г. Москвы, проведения лекционных занятий на математическом факультете МПГУ в курсах «Психолого-педагогические основы обучения математике» (2000, 2001 гг.) и «Педагогика» (2001 г.), в форме отчетов по научно-исследовательской работе на заседаниях кафедры алгебры, геометрии и методики их преподавания МГПУ, выступлений на заседаниях методического объединения учителей математики школ № 1937 и № 1738. Основные положения и результаты исследования докладывались на ежегодных конференциях «Дни науки в МГПУ» (2000 - 2002 гг.), на научно-методической конференции «Стимулирование познавательной деятельности студентов и школьников» (г. Москва, 2002 г.).

Основные этапы исследования. Исследование проводилось в три этапа.

Первый этап исследования (1997-1999 гг.) состоял в изучении теоретических основ проблемы, а также оценке ее состояния на основе анализа литературы, учебных пособий, опыта учителей. На этом этапе происходило изучение психолого-дидактических основ проблемы развития математического мышления учащихся и формирования их познавательных интересов; разработка общего плана исследования, его методологического аппарата, определение сущности проблемы исследования; изучение опыта проведения учебных исследований на уроках математики; разработка плана и содержания педагогического эксперимента.

Второй этап исследования (1999-2001 гг.) включал в себя уточнение конкретных задач исследования; создание банка исследовательских заданий; разработку методических условий использования исследовательских заданий на уроках алгебры с целью развития математического мышления и познавательного интереса учащихся; проведение поискового эксперимента и основной части формирующего эксперимента; разработку критериев проверки эффективности используемой методической системы; подготовку публикаций и основную апробацию результатов исследования

На третьем этапе исследования (2001-2002 гг.) был продолжен формирующий эксперимент; проведено определение влияния разработанной методики на развитие различных компонентов и качеств математического мышления и формирование познавательного интереса к математике; разработаны практические рекомендации по созданию и использованию исследовательских заданий на уроках алгебры в средней школе.

На защиту выносятся:

1. Теоретическое обоснование взаимосвязи процессов развития математического мышления и формирования познавательного интереса учащихся к математике.

2. Теоретическое и экспериментальное обоснование целесообразности и возможности реализации этих процессов посредством включения в обучение алгебре в 7-9 классах исследовательских заданий.

3. Методические рекомендации к составлению исследовательских заданий по алгебре и включению их в учебный процесс.

Структура диссертации. Диссертация состоит из введения, двух глав, заключения и списка литературы.

Реклама


2006-20011 © Каталог российских диссертаций